The Poisson-Weibull Generalized Linear Model for Analyzing Motor Vehicle Crash Data
ثبت نشده
چکیده
Over the last 20 to 30 years, there has been a significant amount of tools and statistical methods that have been proposed for analyzing crash data. Yet, the Poisson-gamma (PG) is still the most commonly used and widely acceptable model. This paper documents the application of the Poisson-Weibull (PW) generalized linear model (GLM) for modeling motor vehicle crashes. The objectives of this study were to evaluate the application of the PW GLM for analyzing this kind of dataset and compare the results with the traditional PG model. To accomplish the objectives of the study, the modeling performance of the PW model was first examined using a simulated dataset and then several PW and PG GLMs were developed and compared using two observed crash datasets. The results of this study show that the PW GLM performs as well as the PG GLM in terms of goodness-of-fit statistics.
منابع مشابه
The Poisson Inverse Gaussian (PIG) Generalized Linear Regression Model for Analyzing Motor Vehicle Crash Data
This paper documents the application of the Poisson Inverse Gaussian (PIG) regression model for modeling motor vehicle crash data. The PIG distribution, which mixes the Poisson distribution and Inverse Gaussian distribution, has the potential for modeling highly dispersed count data due to the flexibility of Inverse Gaussian distribution. The objectives of this paper were to evaluate the applic...
متن کاملApplication of the Conway-Maxwell-Poisson generalized linear model for analyzing motor vehicle crashes.
This paper documents the application of the Conway-Maxwell-Poisson (COM-Poisson) generalized linear model (GLM) for modeling motor vehicle crashes. The COM-Poisson distribution, originally developed in 1962, has recently been re-introduced by statisticians for analyzing count data subjected to over- and under-dispersion. This innovative distribution is an extension of the Poisson distribution. ...
متن کاملEstimating Pedestrian Volumes and Crashes at Urban Signalized Intersections
Crash prediction models are used to estimate the number of crashes using a set of explanatory variables. The highway safety community has used modeling techniques to predict vehicle-to-vehicle crashes for decades. Specifically, generalized linear models (GLMs) are commonly used because they can model non-linear count data such as motor vehicle crashes. Regression models such as the Poisson, Zer...
متن کاملSingle-Vehicle Run-Off-Road Crash Prediction Model Associated with Pavement Characteristics
This study aims to evaluate the impact of pavement physical characteristics on the frequency of single-vehicle run-off-road (ROR) crashes in two-lane separated rural highways. In order to achieve this goal and to introduce the most accurate crash prediction model (CPM), authors have tried to develop generalized linear models, including the Poisson regression (PR), negative binomial regression (...
متن کاملCharacterizing the Performance of the Bayesian Conway-maxwell Poisson Generalized Linear Model
This paper documents the performance of a Bayesian Conway-Maxwell-Poisson (COM-Poisson) generalized linear model (GLM). This distribution was originally developed as an extension of the Poisson distribution in 1962 and has a unique characteristic, in that it can handle both under-dispersed and over-dispersed count data. Previous work by the authors lead to the development of a dual-link GLM bas...
متن کامل